Macro-algae

The SUBMARINER Network is a partner in the GRASS project - Growing Algae Sustainably in the Baltic Sea. Through capacity building and awareness raising, GRASS will result in a demand for macroalgae and unlock the potential of macroalgae production and application sectors in the Baltic Sea Region. This webpage presents the key facts, reports, networks and other relevant information on macro-algae in the Baltic Sea. 

About Macro-algae

As a result of eutrophication, the amount of macroalgae throughout the Baltic Sea has increased. Precise figures are missing due to lack of monitoring, but especially in South Sweden and Denmark substantial amounts of beach wrack assemblages in the range of 70,000–85,000 tons of dry weight per year can be found. Whereas it is difficult to use them readily as fertilizers on agricultural land due to the risk of high-level metal content, there are promising results of pilot studies carried out in using macroalgae as a part of locally available biomass resource mix for biogas plants ). The digestate from the biogas plants be used as crop fertilizer. The removal of beach wrack does not only lead to “cleaner” beaches, with positive impacts tourism and the local communities, it also contributes substantially to nutrient reduction in the Baltic Sea, as macroalgae show a nitrogen content of 2–6 % of dry weight. 

The biorefinery concept offers hope in its ability to integrate the production of the various algae-based  commodities (including, food ingredients and high-value compounds) and ecosystem services (removal of nutrients and CO2 from waste streams).

Food

Macroalgae may be used for human consumption and is a healthy nutritional source: edible macroalgae have high water content, are low in calories and rich in vitamins and minerals. Some species are high in digestible proteins (20–25 % protein of wet weight) and the fibre content is usually  higher than in terrestrial plants. Brown and red algae species are mainly used. The brown macroalga Laminaria japonica (know as kombu) is particularly popular. Moreover, the  brown alga Undaria sp. (known as wakame) and  the red alga Phorphyra sp. (known as nori) areeconomically important macroalgae species for human consumption. The interest in Asian food in Europe and the Baltic Sea Region has increased during the last decade but the use of macroalgae as food is still a small business.

Feed

Macroalgae are also often used as an additive to animal feed due to their high content of minerals, trace elements and vitamins. Brown macroalgae are most frequently used for this purpose. Some species of red macroalgae have been reported having very promising beneficial properties connected with reducing the methane production of livestock. 

Source: https://stud.epsilon.slu.se/13616/7/silwer_h_180726.pdf 

Fertilisers 

Macroalgae are used as fertilisers worldwide, as they not only contain nutrients such as nitrogen, phosphorus and potassium but also trace elements, vitamins and hormones and other compounds that act as soil amendments and promote plant growth. Large brown algae are most commonly used but others can be used as well. In the Baltic Sea there is a risk of high metal content in macroalgae due to a combination of high metal concentrations and low salinity in the waters. 

High-value compounds

In addition to the hydrocolloids described above, macroalgae also contain other useful substances such as antioxidants, pigments, enzymes and polyunsaturated fatty acids, which can be used in the biochemical industry for drugs, cosmetics and dietary supplements. These substances may have a high value on the market. Another important and profitable global market is the extraction of substances from macroalgae, such as phycocolloids. These are natural products that serve to stabilise commonly used emulsions and dispersions in a large number of applications such as diary products, leather, textiles, cosmetics and pharmaceuticals. In 2009, a total of 86,000 tonnes of phycocolloids were sold, with an estimated value of approximately € 0.75 billion.16 Brown macroalgae species of the genera Ascophyllum, Durvillae, Eclonia, Laminaria, Microcystis, and Sargassum are used for alginate extraction. Gelidium sp. and Gracilaria sp. are the two main red algae genera containing agar colloids.

Nutrient uptake

Studies on the potential of Baltic macroalgae show that nitrogen content is around 2–6 % of the algae dry weight,17-20 which is less than that of blue mussels. The phosphorus content in macroalgae is usually less than ten times lower than the nitrogen content. However, under certain local conditions in which substantial biomass is available, the effect of nutrient removal can still be quite substantial.

  • Food

    Macroalgae may be used for human consumption and is a healthy nutritional source: edible macroalgae have high water content, are low in calories and rich in vitamins and minerals. Some species are high in digestible proteins (20–25 % protein of wet weight) and the fibre content is usually  higher than in terrestrial plants. Brown and red algae species are mainly used. The brown macroalga Laminaria japonica (know as kombu) is particularly popular. Moreover, the  brown alga Undaria sp. (known as wakame) and  the red alga Phorphyra sp. (known as nori) areeconomically important macroalgae species for human consumption. The interest in Asian food in Europe and the Baltic Sea Region has increased during the last decade but the use of macroalgae as food is still a small business.

  • Feed

    Macroalgae are also often used as an additive to animal feed due to their high content of minerals, trace elements and vitamins. Brown macroalgae are most frequently used for this purpose. Some species of red macroalgae have been reported having very promising beneficial properties connected with reducing the methane production of livestock. 

    Source: https://stud.epsilon.slu.se/13616/7/silwer_h_180726.pdf 

  • Fertilisers 

    Macroalgae are used as fertilisers worldwide, as they not only contain nutrients such as nitrogen, phosphorus and potassium but also trace elements, vitamins and hormones and other compounds that act as soil amendments and promote plant growth. Large brown algae are most commonly used but others can be used as well. In the Baltic Sea there is a risk of high metal content in macroalgae due to a combination of high metal concentrations and low salinity in the waters. 

  • High-value compounds

    In addition to the hydrocolloids described above, macroalgae also contain other useful substances such as antioxidants, pigments, enzymes and polyunsaturated fatty acids, which can be used in the biochemical industry for drugs, cosmetics and dietary supplements. These substances may have a high value on the market. Another important and profitable global market is the extraction of substances from macroalgae, such as phycocolloids. These are natural products that serve to stabilise commonly used emulsions and dispersions in a large number of applications such as diary products, leather, textiles, cosmetics and pharmaceuticals. In 2009, a total of 86,000 tonnes of phycocolloids were sold, with an estimated value of approximately € 0.75 billion.16 Brown macroalgae species of the genera Ascophyllum, Durvillae, Eclonia, Laminaria, Microcystis, and Sargassum are used for alginate extraction. Gelidium sp. and Gracilaria sp. are the two main red algae genera containing agar colloids.

  • Nutrient uptake

    Studies on the potential of Baltic macroalgae show that nitrogen content is around 2–6 % of the algae dry weight,17-20 which is less than that of blue mussels. The phosphorus content in macroalgae is usually less than ten times lower than the nitrogen content. However, under certain local conditions in which substantial biomass is available, the effect of nutrient removal can still be quite substantial.

Information hub on Macro-algae

Latest news in Macro-algae

Upcoming events



03 Dec – 05 Dec 2019
Paris, France

EUSBSR

SUBMARINER Network for Blue Growth EEIG

Kärntener Str. 20
DE–10827 Berlin

Germany

+4930832141740

This email address is being protected from spambots. You need JavaScript enabled to view it.